97 research outputs found

    A Deep Reinforcement Learning Approach for Finding Non-Exploitable Strategies in Two-Player Atari Games

    Full text link
    This paper proposes novel, end-to-end deep reinforcement learning algorithms for learning two-player zero-sum Markov games. Our objective is to find the Nash Equilibrium policies, which are free from exploitation by adversarial opponents. Distinct from prior efforts on finding Nash equilibria in extensive-form games such as Poker, which feature tree-structured transition dynamics and discrete state space, this paper focuses on Markov games with general transition dynamics and continuous state space. We propose (1) Nash DQN algorithm, which integrates DQN with a Nash finding subroutine for the joint value functions; and (2) Nash DQN Exploiter algorithm, which additionally adopts an exploiter for guiding agent's exploration. Our algorithms are the practical variants of theoretical algorithms which are guaranteed to converge to Nash equilibria in the basic tabular setting. Experimental evaluation on both tabular examples and two-player Atari games demonstrates the robustness of the proposed algorithms against adversarial opponents, as well as their advantageous performance over existing methods

    Research on the Evaluation of Green Logistics Based on Cloud Model

    Get PDF
    Businesses According to the theory of sustainable development, combining with the current development status of the social logistics industry and the characteristics of green logistics, constructing a green logistics evaluation index system. Using cloud model and Delphi method to calculate the cloud weight of green logistics evaluation index, qualitative and quantitative conversion of evaluation index is realized by cloud generator. Take Jiangsu Province as an example to do empirical research, using the cloud model and its algorithm to get the evaluation cloud of green logistics, observing the evaluation result directly and discovering problem easy by comparing the evaluation cloud chart with ruler cloud chart. The evaluation results show that the cloud model is more reasonable, and the credibility of the evaluation results is improved

    Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence

    Full text link
    Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/

    Implicit Neural Representation for Cooperative Low-light Image Enhancement

    Full text link
    The following three factors restrict the application of existing low-light image enhancement methods: unpredictable brightness degradation and noise, inherent gap between metric-favorable and visual-friendly versions, and the limited paired training data. To address these limitations, we propose an implicit Neural Representation method for Cooperative low-light image enhancement, dubbed NeRCo. It robustly recovers perceptual-friendly results in an unsupervised manner. Concretely, NeRCo unifies the diverse degradation factors of real-world scenes with a controllable fitting function, leading to better robustness. In addition, for the output results, we introduce semantic-orientated supervision with priors from the pre-trained vision-language model. Instead of merely following reference images, it encourages results to meet subjective expectations, finding more visual-friendly solutions. Further, to ease the reliance on paired data and reduce solution space, we develop a dual-closed-loop constrained enhancement module. It is trained cooperatively with other affiliated modules in a self-supervised manner. Finally, extensive experiments demonstrate the robustness and superior effectiveness of our proposed NeRCo. Our code is available at https://github.com/Ysz2022/NeRCo

    CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario

    Full text link
    Traffic signal control is an emerging application scenario for reinforcement learning. Besides being as an important problem that affects people's daily life in commuting, traffic signal control poses its unique challenges for reinforcement learning in terms of adapting to dynamic traffic environment and coordinating thousands of agents including vehicles and pedestrians. A key factor in the success of modern reinforcement learning relies on a good simulator to generate a large number of data samples for learning. The most commonly used open-source traffic simulator SUMO is, however, not scalable to large road network and large traffic flow, which hinders the study of reinforcement learning on traffic scenarios. This motivates us to create a new traffic simulator CityFlow with fundamentally optimized data structures and efficient algorithms. CityFlow can support flexible definitions for road network and traffic flow based on synthetic and real-world data. It also provides user-friendly interface for reinforcement learning. Most importantly, CityFlow is more than twenty times faster than SUMO and is capable of supporting city-wide traffic simulation with an interactive render for monitoring. Besides traffic signal control, CityFlow could serve as the base for other transportation studies and can create new possibilities to test machine learning methods in the intelligent transportation domain.Comment: WWW 2019 Demo Pape
    • …
    corecore